Composite Higgs searches

Giuliano Panico

CERN

'Next steps in the Energy Frontier - Hadron Colliders' workshop

Fermilab - 27 August 2014

The LHC is doing a wonderful job in testing the TeV-scale physics

After the full LHC program we will gain a lot of information

- fair determination of single **Higgs observables** ($\sim 10\%$)
- test of **naturalness** up to $\mathcal{O}(few\%)$

The LHC is doing a wonderful job in testing the TeV-scale physics

After the full LHC program we will gain a lot of information

- fair determination of single **Higgs observables** ($\sim 10\%$)
- test of **naturalness** up to $\mathcal{O}(few\%)$

... but we already know that many key features of new-physics scenarios can hardly be tested at the LHC

The LHC is doing a wonderful job in testing the TeV-scale physics

After the full LHC program we will gain a lot of information

- fair determination of single **Higgs observables** ($\sim 10\%$)
- test of **naturalness** up to $\mathcal{O}(few\%)$

... but we already know that many key features of new-physics scenarios can hardly be tested at the LHC

➤ Which is the situation in composite Higgs models?

Introduction: the composite Higgs scenario

In composite Higgs models the Higgs arises as a bound state of a **new strongly-coupled sector**

The composite dynamics gives rise to additional states at the TeV scale:

- Fermionic top partners
- Spin-1 resonances (KK-gluons and EW resonances)

Introduction: the composite Higgs scenario

Need **mass gap** between the Higgs and the other composite states

> natural if the Higgs is a Goldstone

Key features:

- Modification of the SM Higgs couplings
- Non-linear dynamics makes new non-renormalizable interactions

Indirect bounds and lack of enough luminosity limit some important searches at the LHC:

- EW precision data strongly favor small deviations in the **linear** Higgs couplings (<10%)
- EW precision data push the mass of vector resonances to the multi-TeV range
- tests of the non-linear Higgs dynamics usually rely on rare processes with small cross sections

Indirect bounds and lack of enough luminosity limit some important searches at the LHC:

- EW precision data strongly favor small deviations in the **linear** Higgs couplings (< 10%)
- EW precision data push the mass of vector resonances to the multi-TeV range
- tests of the non-linear Higgs dynamics usually rely on rare processes with small cross sections
- ➤ What kind of new experiments do we need to extend our reach on composite models?

In this talk I will discuss how much a future $100 \ {\rm TeV}$ hadronic collider could improve our reach on the parameter space of composite Higgs scenarios:

- ► testing the Higgs compositeness
- searching for top partners
- searching for vector resonances

Testing Higgs compositeness

Higgs compositeness

The **Goldstone boson nature** of the Higgs implies a well defined pattern of deformations of the Higgs couplings

$$\mathcal{L} = m_W^2 W_{\mu}^+ W^{-\mu} \left(1 + 2 \frac{\mathbf{k_v}}{v} \frac{h}{v} \right) - \sum_{\psi} m_{\psi} \overline{\psi} \psi \left(1 + \frac{\mathbf{k_f}}{v} \frac{h}{v} \right) + h.c.$$

- \diamond size of the corrections controlled by the compositeness scale f
 - \bullet The couplings to the gauge fields only depend on the Goldstone structure (eg. $SO(5) \to SO(4)$)

MCHM₄, MCHM₅
$$\kappa_v = \sqrt{1-\xi}$$
 $\xi = v^2/f^2$

The couplings to the fermions have more model dependence

MCHM₄
$$k_f = \sqrt{1-\xi}$$

MCHM₅ $k_f = \frac{1-2\xi}{\sqrt{1-\xi}}$ $\xi = v^2/f^2$

Single Higgs couplings

Measuring κ_v gives a **model-independent** bound on ξ

The current data give a bound $\xi \lesssim 0.2$

- ightharpoonup The ultimate LHC reach is $\xi \sim 0.1$
- > Limited improvement possible at an hadronic machine!

Higgs couplings at a 100 TeV machine

Other measurements can however benefit from high energy and high luminosity:

- Higgs coupling to the top quark
- non-linear Higgs interactions

Possible relevant channels:

- ightharpoonup WW scattering and $WW \to hh$
- > Double Higgs production in gluon fusion

Higgs couplings at a 100 TeV machine

Other measurements can however benefit from high energy and high luminosity:

- Higgs coupling to the top quark
- non-linear Higgs interactions

Possible relevant channels:

- ightharpoonup WW scattering and $WW \to hh$
- Double Higgs production in gluon fusion

Double Higgs production in gluon fusion

The relevant Higgs couplings can be parametrized as

$$m_{top} \, \bar{t}t \left(\frac{c}{c} \frac{h}{v} + \frac{c_2}{2} \frac{h^2}{v^2} \right) , \quad c_3 \, g_{hhh}^{SM} \, h^3$$

 \triangleright can be used to extract the Higgs trilinear coupling c_3

[Baur, Plehn, Rainwater; Grober, Muhlleitner;
Contino, Ghezzi, Moretti, G. P., Piccinini, Wulzer;
Dolan, Englert, Spannowsky; Goertz, Papaefstathiou, Yang, Zurita; ...]

 \succ is sensitive to non-renormalizable Higgs interactions ($\bar{t}thh$ is a distinctive sign of a composite Higgs)

[Grober, Muhlleitner; Contino, Ghezzi, Moretti, G. P., Piccinini, Wulzer]

Double Higgs production in gluon fusion

The cross section can be significantly modified even for small deviations of the Higgs couplings

- ightharpoonup strong dependence on c and c_2
- ightharpoonup milder dependence on c_3

At the LHC the measurement is severely limited by statistics:

$$\sigma(gg \to hh \to \gamma\gamma bb)_{SM} \simeq 5 \text{ ab } @ 14 \text{ TeV}$$

Double Higgs production in gluon fusion

The cross section can be significantly modified even for small deviations of the Higgs couplings

- ightharpoonup strong dependence on c and c_2
- \succ milder dependence on c_3

At the LHC the measurement is severely limited by statistics:

$$\sigma(gg \to hh \to \gamma \gamma bb)_{SM} \simeq 5 \text{ ab } @ 14 \text{ TeV} \implies 200 \text{ ab } @ 100 \text{ TeV}$$

➤ huge improvement at 100 TeV!

Can test Higgs trilinear and Higgs compositeness for $\xi \sim 0.02$

Searches for top partners

Top partners and naturalness

Top partners control the generation of the Higgs potential and the stability of the Higgs mass

$$\left. \delta m_h^2 \right|_{1-loop} \sim \left. \begin{array}{c} h \\ --h \end{array} \right. + \left. \begin{array}{c} h \\ --h \end{array} \right. + \left. \begin{array}{c} h \\ --h \end{array} \right. \sim - \frac{y_{top}^2}{8\pi^2} M_X^2 \lesssim {\rm TeV}$$

A **bound** on the partners mass translates into an unavoidable amount of **fine-tuning**

$$\Delta \gtrsim \left(\frac{M_X}{400 \text{ GeV}}\right)^2$$

Top partners and naturalness

Top partners control the generation of the Higgs potential and the stability of the Higgs mass

$$\left. \delta m_h^2 \right|_{1-loop} \sim \left. \frac{h}{1-loop} \sim \left. \frac{h}{loop} - \frac{h}{loop} + \frac{h}{loop} - \frac{h}{loop} - \frac{y_{top}^2}{8\pi^2} M_X^2 \lesssim \text{TeV} \right.$$

A **bound** on the partners mass translates into an unavoidable amount of **fine-tuning**

$$\Delta \gtrsim \left(\frac{M_X}{400~{
m GeV}}\right)^2$$

Natural Composite Higgs:

light top partners

Natural SUSY:

light stops

Top partners at the LHC

Top partners can be easily produced through:

- QCD interactions (pair prod. universal)
- couplings with heavy quarks (single prod. model dependent)

- ightharpoonup LHC can probe partner masses up to $M_X \sim 2~{
 m TeV}$
- ightharpoonup testing **naturalness** up to $\mathcal{O}(4\%)$

Top partners at 100 TeV

At $100 \ {\rm TeV}$ the production cross section allows to explore a huge range of masses

- ightharpoonup model-independent reach $M_X \sim 7~{\rm TeV}$
- > by using single production $M_X \sim 12 \text{ TeV}$
- ightharpoonup testing **naturalness** up to $\mathcal{O}(0.1\%)$

Implications on explicit models

In a large class of models (eg. $MCHM_{4,5,10}$) the mass of the lightest partner is tightly connected to the compositeness scale

[Matsedonskyi, G. P., Wulzer; Marzocca, Serone, Shu; Pomarol, Riva]

$$\frac{m_H}{m_{top}} \gtrsim \frac{\sqrt{3}}{\pi} \frac{M_X}{f} \qquad \Longrightarrow \qquad \xi \lesssim \left(\frac{500 \text{ GeV}}{M_X}\right)^2$$

- ightharpoonup LHC can test $\xi \sim 0.05$
- ightharpoonup at 100 TeV can probe $\xi \sim 0.002$

Searches for vector resonances

Vector resonances

Vector resonances are unavoidably present in composite Higgs models

The composite dymanics is charged under an extension of the SM gauge groups

- ➤ QCD vector resonances ("KK gluons")
- > EW vector resonances

Vector resonances

Vector resonances are unavoidably present in composite Higgs models

The composite dymanics is charged under an extension of the SM gauge groups

- ➤ QCD vector resonances ("KK gluons")
- > EW vector resonances

EW vector resonances

EW vector resonances are mixed with the SM gauge bosons and generate corrections to the EW observables

$$\Delta \widehat{S} \simeq \frac{m_W^2}{m_\rho^2}$$

The EW precision data put strong (indirect) bounds

$$m_{\rho} \gtrsim 2 \text{ TeV}$$

▶ Much stronger bound if no tuning in \widehat{T} : $m_{\rho} \gtrsim 5 \text{ TeV}$

EW vector resonances

 most of the parameter space accessible at the LHC is already disfavored by the EW data

EW vector resonances

 most of the parameter space accessible at the LHC is already disfavored by the EW data

► an $100~{\rm TeV}$ collider can easily probe regions with tiny Higgs compositeness $(\xi \lesssim 0.002)$

Conclusions

Thanks to the large increase in energy and cross sections a future $100~{
m TeV}$ hadronic collider can hugely improve the searches for composite Higgs scenarios

- > Significantly **extend** LHC searches
 - reach top partners with $M_X \sim 10~{\rm TeV}$
 - test naturalness up to $\mathcal{O}(0.1\%)$
- > Probe observables and dynamics not testable at the LHC
 - non-linear Higgs couplings
 - EW vector resonances